Wpływ domieszek kilku metali na właściwości krzemianu trójwapniowego

The influence of few metals on the properties of tricalcium silicate

Słowa kluczowe: alit, polimorfizm, roztwory stałe w alicie Zn, Al, Mg i Cr, ciepło hydratacji

Key words: alite, polymorphism, solid solutions in alite Zn, Al, Mg and Cr, heat of hydration

1. Wprowadzenie

Krzemian trójwapniowy jest podstawową fazą klinkieru portlandzkiego i jego zawartość wynosi od 50% do 65%, przy czym ta mniejsza wartość dotyczy cementów belitowych. Fazie tej poświecono wiele badań począwszy od jej struktury, złożonych przemian polimorficznych i roztworów stałych.

Strukturę krzemianu trójwapniowego opracował Jeffery (1), przy czym w związku z jej skomplikowaną budową uważa się ją za przybliżoną. Struktura ta jest zbudowana z tetraedrów krzemo-tlenowych, przy czym liczba koordynacyjna LK wynosi 4 = $[SiO_4]^4$. Tetraedry te są połączone jonami wapniowymi, które mają liczbę koordynacyjną 6 i tworzą tak zwaną podsieć kationową. W związ-ku z tym, że tetraedry krzemo-tlenowe nie są ze sobą połączone ani jednym wierzchołkiem, krzemian trójwapniowy zaliczamy do ortokrzemianów.

Krzemian trójwapniowy tworzy wiele faz polimorficznych, których struktury są bardzo zbliżone (2). Wszystkie przemiany należą do przemian z przemieszczeniem i do ich przeprowadzenia wystarczy niewielkie przesunięcie atomów, bez zrywania wiązań w pierwszej strefie koordynacyjnej. Zachodzą więc one łatwiej, a entalpie przemian są małe. Faz wysokotemperaturowych nie udało się stabilizować gwałtownym chłodzeniem. Regourd (3) wyróżnia siedem odmian polimorficznych krzemianu trójwapniowego, które podano w tablicy 1.

Krzemian trójwapniowy Ca₃[SiO₄]O tworzy następujący szereg faz polimorficznych:

$$T_{I} \xrightarrow{620^{\circ}C} T_{I} \xrightarrow{920^{\circ}C} T_{III} \xrightarrow{980^{\circ}C} J_{I} \xrightarrow{990^{\circ}C} J_{I} \xrightarrow{1070^{\circ}C} R$$

Są to trzy polimorfy trójskośne, dwa jednoskośne i jeden rombowy.

W klinkierze, na skutek obecności domieszek izomorficznych, stabilizowana jest faza jednoskośna lub czasem romboedryczna – rombowa (4) [rysunek 2].

182 сwв-з/2018

1. Introduction

Tricalcium silicate is basic phase of Portland clinker and its content is in the range from 50% to 65%, wherein this lower value concerns belite cements. Many studies have been devoted to this phase, starting from its structure, complex polymorphic transformations and solid solutions.

The structure of tricalcium silicate was determined by Jeffery (1), however, it is considered to be approximate due to its complex construction. This structure is composed of silica–oxygen tetrahedra, and coordination number CN is $4 = [SiO_4]^4$. These tetrahedra are bound by calcium ions, which have coordination number equal to 6 and form so called cationic sublattice. Due to the fact that silica–oxygen tetrahedra not share any corners, tricalcium silicate belongs to orthosilicates.

Tricalcium silicate forms several polymorphic phases, which structures are very similar (2). All transformations belong to the displacive type and even small displacement of atoms is sufficient to their occurring, without breaking the bonds in primary coordination sphere. Then they occur easily and the enthalpies of transformation are low. The high–temperature phases cannot be stabilised by rapid quenching. Regourd (3) distinguishes seven polymorphic forms of tricalcium silicate, which are given in Table 1.

Tricalcium silicate $Ca_3[SiO_4]O$ forms the following row of polymorphic phases:

$$T_{I} \xrightarrow{620^{\circ}C} T_{I} \xrightarrow{920^{\circ}C} T_{III} \xrightarrow{980^{\circ}C} J_{I} \xrightarrow{990^{\circ}C} J_{I} \xrightarrow{1070^{\circ}C} R$$

These are three triclinic polymorphs [T], two monoclinic polymorphs [J] and one rhombohedral polymorph [R].

In clinker, monoclinic phase or sometimes rhombohedral – rhombic phase are stabilised due to the occurrence of isomorphic elements (4) [Fig. 2].

Faza jednoskośna 3 została opisana przez Makiego i Chromego (5). Regourd (3) znalazła tę fazę w próbkach zawierających 0,5% ZnO, jednak uważa, że jest to "odwrotna" forma fazy polimorficznej J_{II}, w której charakterystyczne linie 224,404 oraz 620,040 są odwrócone. Zakresy trwałości poszczególnych faz polimorficznych różnią się nieco między sobą w zależności od metody zastosowanej do ich wyznaczania. Do rozróżnienia poszczególnych faz polimorficznych C₃S na podstawie dyfraktogramów najważniejsze są dwa zakresy kątów 20: 31-33° oraz 51-52° (6)1.

Praktyczne znaczenie przemian polimorficznych krzemianu trójwapniowego jest niewielkie, gdyż nie ma ono wyraźniejszego wpływu na szybkość reakcji C₃S z wodą oraz na wytrzymałość cementu.

Roztwory stałe w krzemianie trójwapniowym pozwalaja na stabilizację różnych faz w niskiej temperaturze. Wzrost stężenia domieszki w roztworze stałym powoduje stabilizację fazy trwałej w coraz to wyższej temperaturze [tablica 3]. Spośród pojedynczych domieszek fazy trwałe w najwyższej temperaturze stabilizuje tylko ZnO. Jon Zn²⁺ zastępuje Ca²⁺ w sieci C₃S (7). Dodatek ZnO obniża temperatury przemian. Dalszymi tlenkami, które zastępują CaO, są MgO i BaO. Maksymalna rozpuszczalność MgO wynosi 2% w temp. 1550°C. Przy zawartości większej od 2% pojawia się peryklaz (7).

BaO rozpuszcza się w C₃S w bardzo ograniczonej ilości, wypierając substytucyjnie wapń (9). Można więc POLYMORPHS OF C₃S (3) tym roztworom stałym przypisać wzór: (Ca_{1-x}Ba_x)₃[SiO₄]O, przy czym $x \le 0.02$ w temperaturze 1600°C (9). Niewielka zawartość BaO w formie roztworu stałego zwiększa szybkość twardnienia C₃S (9). Także Na₂O podstawia CaO w sieci C₃S; stabilizowana jest struktura jednoskośna (10).

W klinkierach portlandzkich glin jest jonem najczęściej podstawiającym Si. Roztwory Al₂O₃ w C₃S były badane przez Woermanna i in. (7) i Regourd (6). Wyróżniają oni dwa rodzaje roztworów stałych. Przy zawartości Al₂O₃ do 0,45% Al³⁺ podstawia Si⁴⁺ w tetraedrach i równocześnie zajmuje

Tablica 1 / Table 1

FAZY POLIMORFICZNE C₃S (3)

	Metoda badawcza / Method					
Temperatura przemiany Transformation temperature °C	Rentgenografia XRD	Mikroskopia Microscopy	Termiczna analiza różnicowa [entalpia, J/g] DTA [enthalpy, J/g]			
1070	R	R	_ a			
1060	$J_{\scriptscriptstyle \mathrm{IIb}}$	J_3	_ a			
990	$J_{\scriptscriptstyle { m IIa}}$	<i>J</i> ₂ , J ₁	0,209			
980	J_{la}		0,209			
920	T _{III}		4,19			
620	T _{II}	T_3 , T_2	2,51			
120	T_1	<i>T</i> ₁	_			

° Na krzywych DTA nie występują przemiany R \rightarrow J_3 i $J_2 \rightarrow J_3$ / On DTA curves the transformations R \rightarrow J_3 and $J_2 \rightarrow J_3$ are not found

wolne pozycje oktaedryczne, powodując tym samym utrzymanie elektrycznej neutralności sieci.

Te roztwory stałe można opisać wzorem:

$$Ca_{3}^{V/}Al_{x/4}^{V/}[Si_{1-3x/4}Al_{3x/4}]^{V}O_{5}$$

przy czym x≤0,02, a VI'jest wakancją oktaedryczną. Stabilizowana jest faza trójskośna pierwsza $T_{\rm l}$.

Phase monoclinic 3 was described by Maki and Chromy (5). Regourd (3) found this phase in samples containing 0.5 % of ZnO, but she states that it is "reversed" form of polymorphic phase J_{\parallel} , in which the characteristic peaks 224, 404 and 620, 040 are reversed. The stability ranges of individual C₃S polymorphic phases can be somewhat different depending on the method used for their establishing. To distinguish the individual C₃S polymorphic phases with X-ray analysis, the most important are two ranges of 2θ angles: 31–33° and 51–52° (6)1.

Rys. 1. Pionowy przekrój przez dłuższą przekątną heksagonalnej komórki elementarnej $C_3S(1)$

Fig. 1. Vertical intersection through the longer diagonal of hexagonal unit cell (1)

¹Rentgenogramy faz polimorficznych C₃S podają Guinier i Regourd (6)

¹ Guinier and Regourd (6) presented X-ray patterns of C₃S polymorphic phases

Rys. 2. Przekrój przez układ CaO–SiO₂–MgO–Al₂O₃–Fe₂O₃, pokazujący stabilizowaną, po ochłodzeniu próbki, fazę C₃S; stosunek molowy Al₂O₃ do Fe₂O₃ = 1 (4)

Fig. 2. The section of the system CaO–SiO₂–MgO–Al₂O₃–Fe₂O₃ showing stable polymorphic phase of C₃S after cooling; molar ratio of Al₂O₃/Fe₂O₃ = 1 (4)

Po przekroczeniu 0,45% AI_2O_3 jony AI^{3+} podstawiają w tetraedrach Si oraz Ca w położeniach oktaedrycznych. Odpowiada tym roztworom wzór:

$$(Ca_{3-x/2}AI_{x/2})^{V/}[Si_{1-x/2}AI_{x/2}]^{V}O_{5}$$

Równocześnie w mniejszym stopniu może także występować lokowanie się jonów glinu w wakancjach oktaedrycznych. Stabilizowana jest wówczas faza T_{II} . Po przekroczeniu 1% AI_2O_3 pojawiają się linie C_3A na rentgenogramie, a więc jest to granica rozpuszczalności w temperaturze 1550°C.

Równoczesna zawartość Mg, a także Ba zmienia rodzaj podstawień Al. Mianowicie w przypadku Ba jony Al³⁺ są wypierane z pozycji oktaedrycznych do tetraedrycznych, nabierają więc tylko charakteru kwasowego (13). Zakresy roztworów stałych MgO i Al₂O₃ nie ulegają zmianie i wynoszą odpowiednio 2% i 1%. Graniczna rozpuszczalność Al₂O₃ nie zależy od temperatury, podczas gdy dla MgO bardzo rośnie z temperaturą [1,5% w temperaturze 1420°C].

Zawartość Fe_2O_3 w roztworze stałym w C_3S może wynosić maksymalnie 1,1%. W zakresie do 0,8% stabilizowana jest faza T_1 , a powyżej 0,8% faza T_{11} . Według Fletchera (14) 3Fe³⁺ podstawiają 3Ca²⁺, a 6Fe³⁺ 6Si⁴⁺, natomiast różnicę ładunku kompensuje jeden jon Fe³⁺ w pozycji międzywęzłowej. Hahn i in. (15) podają wzór:

$$(Ca_{1-x/6}Fe_{x/6})_2^{N}[Si_{1-x/2}Fe_{x/2}]^{N}O_5$$

słuszny przy Ca/Fe = 1. Gdy stosunek atomowy Ca/Fe zawarty jest w przedziale 1–1,25, podstawienie jest następujące:

$$(Ca_{3-x/2}Fe_{x/2})^{IV}[Si_{1-x/2}Fe_{x/2}]^{IV}O_{5}$$

Natomiast Ca/Al zmienia się od I do 2,25, co świadczy o podstawieniach przede wszystkim typu II:

$$Ca_{3}^{VI}AI_{V/4}^{VI'}[Si_{1-3y/4}AI_{3y/4}]^{V}O_{5}$$

 T_1 i T_{11} stabilizują pojedyncze domieszki, natomiast J_1 tylko dowolne pary spośród trzech tlenków Al₂O₃, Fe₂O₃ i MgO. Jeśli Al występuje razem z Fe, to tylko Al zajmuje położenia oktaedryczne.

The practical importance of tricalcium silicate polymorphic transformations is inconsiderable, because it has no visible impact on the reaction rate of C_3S with water and cement strength.

Solid solutions in tricalcium silicate can stabilize different phases at low temperature. The increase in foreign elements concentration in solid solution causes the stabilisation of phase stable at higher and higher temperature [Table 3]. Among the single foreign elements, stable phases at the highest temperature are stabilising only by ZnO. Zn^{2+} ion substitutes Ca^{2+} ion in the C_3S lattice (7). ZnO addition decreases the transformations temperature. Further oxides, which substitute CaO are MgO and BaO. The maximum solubility of MgO is 2% at temperature of 1550°C. When the content is higher than 2%, periclase appears (7).

The solubility of BaO in C₃S is very limited, and calcium is substituted and displaced (9). These solid solutions can be then described by the formula: $(Ca_{1-x}Ba_x)_3[SiO_4]O$, where $x \text{ is } \le 0.02$ at temperature of 1600°C (9). Low BaO content in the form of solid solution increases the rate of C₃S hardening (9). Also Na₂O substitutes CaO in C₃S lattice; monoclinic structure is stabilised (10).

In Portland clinkers, aluminium is the ion, which substitutes Si the most frequently. The AI_2O_3 solid solutions in C_3S were studied by Woermann et al. (7) and Regourd (6). They distinguish two types of solid solutions. When AI_2O_3 content does not exceed 0.45%, AI^{3+} substitutes Si^{4+} in tetrahedra and simultaneously occupies free octahedral positions, assuring maintenance of electrical neutrality of the lattice.

These solid solutions can be described by following formula:

$$Ca_{3}^{V/}Al_{x/4}^{V/}[Si_{1-3x/4}Al_{3x/4}]^{V}O_{5}$$

where x is \leq 0.02, and VI' is octahedral vacancy. The first triclinic phase T_1 is stabilized.

When Al_2O_3 exceeds 0.45%, Al^{3+} ions substitute Si in tetrahedra and Ca in octahedral positions. The following formula corresponds to these solutions:

$$(Ca_{3-x/2}AI_{x/2})^{VI}[Si_{1-x/2}AI_{x/2}]^{VV}O_{5}$$

Simultaneously, in lower degree, aluminium ions can occupy the octahedral vacancies. Then, the phase T_{II} is stabilised. After exceeding 1% of Al₂O₃, the peaks of C₃A appear on X–ray pattern, thus it is the solubility limit at 1550°C.

In the presence of Mg and also Ba, the type of Al substitutions is changed. In the case of Ba, Al³⁺ ions are displaced from octahedral to tetrahedral positions, thus they reach the acidic character (13). The ranges of solid solutions of MgO and Al₂O₃ remained unchanged and they are 2% and 1%, respectively. The solubility limit of Al₂O₃ does not depend on temperature, whereas for MgO is highly increasing with temperature [1.5% at 1420°C].

 Fe_2O_3 content in C_3S solid solution can achieve maximum 1.1%. In the range up to 0.8% phase T_1 is stabilized, and phase T_{11} above 0.8%. According to Fletcher (14), $3Fe^{3+}$ substitute $3Ca^{2+}$ and $6Fe^{3+}$

Tablica 2 / Table 2

ZAWARTOŚCI RÓŻNYCH TLENKÓW, STABILIZUJĄCE FAZY POLIMORFICZNE C₃S PO GWAŁTOWNYM OCHŁODZENIU OD TEMPERATURZE 1500°C (4, 11, 12)

Tlenek	Dodatek stabilizujący fazę / Additive stabilising phase, %						Graniczna rozpuszczalność w temp. 1500°C
Oxide	т	т	т	1	1	D	Threshold solubility at temp. 1500°C, %
	1	• "	•	J	J	ĸ	mass
Cr ₂ O ₃	0–1,4	-	-	-	-	-	1,4
Fe ₂ O ₃	0–0,9	0,9–1,1	_	-	-	-	1,1
Ga ₂ O ₃	0–0,9	0,9–1,9	_	-	_	-	1,9
Al ₂ O ₃	0–0,45	0,45–1,0	_	_	_	_	1,0
MgO	0–0,55	0,55–1,45	_	1,45–2,0	_	_	2,0
Mn ₂ O ₃	0–0,01	0,01–0,06	0,06 _a				0,06ª
TiO ₂	0–0,005	0,005–0,13	-	-	-	-	0,13ª
BaO	0–0,5ª	0,5–1,0ª	1–1,05ª	1,05–1,75ª			1,75ª
ZnO	0–0,8	0,8–1,8	_	1,8–2,2	2,2–4,5	4,5–5,0	5,0 ^b
La ₂ O ₃	0-	1,0		1,0-	-1,5	2,0–4,0	4,0
MgO +						0,93°	
+ Al ₂ O ₃ +						1,97	
+ TiO ₂						2,43	
MgO +						2,02°	
+ Al ₂ O ₃ +						0,96	
+ Mn ₂ O ₃						1,91	

CONTENT OF DIFFERENT OXIDES, STABILISING POLYMORPHIC PHASES OF C₃S AFTER RAPID QUENCHING FROM TEMPERATURE OF 1500°C (4, 11, 12)

^a w procentach molowych / mole %; ^b w temperaturze 1400°C / at 1400°C; ^c traktowany jako syntetyczny alit / regarded as synthetic alite

Jon chromu podstawia atom krzemu w sieci C₃S, a ponieważ może on występować na dwóch stopniach utlenienia, powstają wakancje wapniowe według schematu:

$$2Si^{4+} \rightarrow 2Cr^{5+} + V_{Ca}$$

$$Si^{4+} \rightarrow Cr^{4+}$$

Boikowa (16) wysuwa hipotezę powstawania obok wapniowych także wakacji krzemowych:

$$3Si^{4+} \rightarrow 2Cr^{6+} + V_{Si}$$

 $3Ca^{2+} \rightarrow 2Cr^{3+} + V_{Ca}$

Uważa się, że roztwory stałe $C_3S + Cr_2O_3$ są półprzewodnikiem typu *p*.

Toropow i Boikowa (17) badali roztwory stałe krzemianu trójwapniowego z krzemianami ziem rzadkich i itru oraz germanianami wapnia. Stwierdzili, że jest duże podobieństwo między Ca_3SiO_5 a Ca_3GeO_5 , które są izomorficzne. Germanian trójwapniowy ma także sześć faz polimorficznych T_1 , T_{11} , T_{11} , J_1 i J_1 oraz R.

Ti⁴⁺ podstawia Si⁴⁺ w C₃S w temperaturze 1600°C aż do 0,14 mola 3CaO·TiO₂. Stabilizuje się faza T_{II} . Także Kondo i Yoshida (18) uważają, że w alicie rozpuszczają się niewielkie ilości TiO₂, do 0,13 mola 3CaO·TiO₂; po przekroczeniu tej ilości C₃S ulega rozkładowi na wolne CaO i tytanian wapnia. Natomiast mangan tworzy roztwory stałe w C₃S w bardzo ograniczonym zakresie. substitute $6Si^{4+}$, however, the charge difference is compensated by one ion of Fe^{3+} in interstitial position. Hahn et al. (15) give the formula:

$$(Ca_{1-x/6}Fe_{x/6})_2^{/V}[Si_{1-x/2}Fe_{x/2}]^{/V}O_5$$

valid for Ca/Fe = 1. When the atomic ratio Ca/Fe is in the range of 1-1.25, the substitution is as follows:

$$(Ca_{3-x/2}Fe_{x/2})^{lV}[Si_{1-x/2}Fe_{x/2}]^{lV}O_{5}$$

However, Ca/Al changes from 1 to 2.25, which mainly testifies about substitution of type II:

$$Ca_{3}^{VI}AI_{y/4}^{VI'}[Si_{1-3y/4}AI_{3y/4}]^{V}O_{5}$$

 T_1 and T_{11} are stabilized by single foreign ions, but J_1 by arbitrary pairs from among three oxides: Al₂O₃, Fe₂O₃ and MgO. If Al occurs together with Fe, then only Al occupies the octahedral positions.

Chromium ion substitutes silicon ion in C_3S lattice, and because it can occur on two oxidized levels, the calcium vacancies can be formed, according to the scheme:

$$\begin{split} 2Si^{4+} &\rightarrow 2Cr^{5+} + V_{Ca} \\ Si^{4+} &\rightarrow Cr^{4+} \end{split}$$

Boikova (16) puts forward the hypothesis that besides calcium also silicon vacancies can be formed:

Kondo i Yoshida (18) określają rozpuszczalność 3CaO-MnO_2 na 0,06 mola. Jon Mn²⁺ w ilości do 0,02 mola podstawia Si⁴⁺, a po przekroczeniu tej ilości Mn²⁺ podstawia Ca²⁺, a Mn⁴⁺ Si⁴⁺ w stosunku 3:1. Kondo i Yoshida (18) nie wykluczają także lokowania się jonów manganu w lukach występujących w strukturze C₃S. Przy stężeniu 3CaO·MnO₂ wynoszącym 0,01 mola stabilizuje się faza *T*_{II}, a przy większym stężeniu – *T*_{III}.

Liczne prace dotyczą także wpływu roztworów stałych C₃S na aktywność hydrauliczną tej fazy. Panuje przy tym pogląd, że zmiany reaktywności różnych faz C₃S w stosunku do wody nie są związane z polimorfizmem tej fazy, lecz przede wszystkim z defektami struktury krystalicznej, wywołanymi przez roztwory stałe. Przede wszystkim wymienia się tutaj wakancje, obecność domieszek, występowanie dyslokacji, defekty powierzchniowe. Jest bardzo prawdopodobne, że duże znaczenie mają także właściwości jonów domieszkowych (19). Roztwór stały z BaO (19) wyróżnia się szybszą hydratacją. Roztwory stałe z Al lub Fe zapewniają lepszą wytrzymałość zapraw niż roztwór zawierający Mg.

Na podstawie badań Gutta i Smitha, Lea (20) podaje, że C_3S przyjmuje 2,9% SO₃ w formie roztworu stałego w temperaturze 1310°C. Jon S⁶⁺ podstawia 2Ca²⁺ + ½Si⁴⁺ i można przyjąć jako roztwór stały: 92% moli C₃S i 8% moli "2CaSO₄·SiO₂".

Alit w klinkierze portlandzkim zawiera przede wszystkim w roztworze stałym Al₂O₃, Fe₂O₃ i MgO, które stabilizują fazę J_1 . Jak więc już wcześniej podano, alit w klinkierze występuje najczęściej w fazie J_1 , a przy większej zawartości MgO i SO₃ – w fazie J_3 , rzadziej heksagonalnej [*R*] lub trójskośnej [T_2]. Czasem występuje odwrócona faza J_2 .

Zawartość domieszek izomorficznych w alicie jest znaczna, a powstałe roztwory stałe mają bardzo złożony skład chemiczny. W związku z tym, że pustki w C₃S mogą pomieścić tylko bardzo ograniczoną liczbę jonów, roztwory stałe bardzo zaburzają strukturę tej fazy. Składy chemiczne głównych faz klinkierowych podano w tablicy 3. Badania za pomocą mikrosondy elektronowej wykazały, że stosunek C/S klinkierowej fazy alitu jest przeważnie większy od 3 i waha się z reguły od 3,02 do 3,04, co przypisuje się właśnie roztworom stałym. Przykłady zawartości domieszek w dwóch alitach o różnej strukturze podano za Regourd (3) w tablicy 4.

W tablicy 4 podano zakresy występowania różnych tlenków w roztworach stałych w klinkierze. Wynika stąd, że faza alitu nie jest krzemianem trójwapniowym, lecz roztworami stałymi Al₂O₃, Fe₂O₃ i MgO w Ca₃[SiO₄]O. Przy zawartości Al₂O₃ do 0,45% Al³⁺ podstawia Si⁴⁺ w tetraedrach i równocześnie zajmuje wolne pozycje oktaedryczne, powodując tym samym utrzymanie elektrycznej neutralności sieci.

Jak wynika z omówienia literatury bardzo duże zainteresowanie wzbudziły badania struktury krzemianu trójwapniowego zawierającego domieszki różnych kationów. Natomiast bardzo mało badań obejmowało wpływ tych domieszek na proces hydratacji krzemianu trójwapniowego i jego wytrzymałość z domieszkami. Z tego względu przeprowadzono doświadczenia obejmujące przede wszystkim

$$3Si^{4+} \rightarrow 2Cr^{6+} + V_{Si}$$

$$3Ca^{2+} \rightarrow 2Cr^{3+} + V_{Ca}$$

It is stated that the solid solutions of $C_3S + Cr_2O_3$ are semiconductors of type *p*.

Toropov and Boikova (17) have studied the solid solutions of tricalcium silicate with the rare earth silicates and yttrium, as well as calcium germinates. They stated high similarity between Ca_3SiO_5 and Ca_3GeO_5 , which are isomorphic. Tricalcium germinate also has six polymorphic phases T_1 , T_{11} , T_{11} , J_1 , J_1 and R.

Ti⁴⁺ substitutes Si⁴⁺ in C₃S at 1600°C up to 0.14 moles of 3Ca-O·TiO₂. *T*_{II} phase is stabilized. Also Kondo and Yoshida (18) stated that small quantities of TiO₂ can dissolve in alite, up to 0.13 moles of 3CaO·TiO₂; higher quantities caused decomposition of C₃S to free CaO and calcium titanate. However, manganese forms solid solutions in C₃S in very limited extent. Kondo and Yoshida (18) have determined the solubility of 3CaO·MnO₂ as 0.06 moles. Mn²⁺ ion in amount up to 0.02 moles substitutes Si⁴⁺ and in higher quantities Mn²⁺ substitutes Ca²⁺ and Mn⁴⁺ substitutes Si⁴⁺ in 3:1 ratio. Kondo and Yoshida (18) do not exclude placing of manganese ions in the lattice defects, existing in the C₃S structure. At the 3CaO·MnO₂ concentration equal to 0.01 moles, *T*_{II} phase is stabilized and at higher concentration - *T*_{III}.

Several works are also devoted to the effect of C_3S solid solutions on hydraulic activity of this phase. There is a view that the reactivity changes of different C_3S phases in relation to water are not linked with the polymorphism of this phase, but principally with the crystal structure defects, caused by solid solutions. Primarily the vacancies, the presence of foreign elements, and dislocations, as well as superficial defects are listed. It is much likely that very important are also the properties of minor elements (19). Solid solution with BaO (19) is distinguished by quicker hydration. Solid solutions with Al or Fe assure higher strength of mortars than the solution containing Mg.

Based on the studies of Gutt and Smith, Lea (20) gives that C_3S can take 2.9% of SO_3 in the form of solid solution at 1310°C. S^{6+} substitutes $2Ca^{2+} + \frac{1}{2}Si^{4+}$ and solid solution has the composition: 92 moles % of C_3S and 8 moles % of " $2CaSO_4 \cdot SiO_2$ ".

Alite in Portland clinker contains primarily in solid solution Al_2O_3 , Fe_2O_3 and MgO, which stabilize phase J_1 . Thus, as it was aforementioned, alite in clinker forms the most frequently phase J_1 , and at higher MgO and SO₃ content - phase J_3 , seldom hexagonal [*R*] or triclinic [T_2]. Sometimes the inversed phase J_2 can be found.

The content of isomorphic foreign elements in alite is significant, and the formed solid solutions have a very complex chemical composition. In connection with very limited quantity of ions which can be placed in voids in C_3S , the solid solutions introduce many defects in the structure of this phase. Chemical compositions of the main clinker phases are given in Table 3. The examinations with electron microprobe have shown that C/S molar ratio of alite in clinker is mostly higher than 3 and as the rule is in the range

Tablica 3 / Table 3

ZAWARTOŚCI DOMIESZEK [% MAS.] NAJCZĘŚCIEJ SPOTYKANE W FAZACH KLINKIEROWYCH

CONTENT OF FOREIGN ELEMENTS [% MASS] THE MOST FREQUENTLY FOUND IN CLINKER PHASES

Faza / Dhaaa	Tlenekª / Oxideª							
Faza / Filase	Al ₂ O ₃	Fe ₂ O ₃	MgO	SiO ₂	Na ₂ O	K ₂ O	TiO ₂	
Alit/ Alite	0,7–1,7	0,4–1,6	0,3–1,0	_	0,1–0,3	0,1–0,3	0,1–0,4	
Belit / Belite	1,1–2,6	0,7–2,2	0,2–0,6	_	0,2–1,0	0,3–1,0	0,1–0,3	
C ₃ A] –	4,4–6,0	0,4–1,0	2,1–4,2	0,3–1,7	0,4–1,1	0,1–0,6	
Ferrytowa / Ferrite	-	-	0,4–3,8	1,2–6,0	0,0–0,5	0,0–0,1	0,9–2,6	

^a Ponadto: Mn₂O₃ w alicie i belicie 0,01–0,06, w fazie ferrytowej do 0,06; SO₃ w alicie 0,02–0,17, w belicie 0,1–0,7% mas. / Additionally Mn₂O₃ in alite and belite 0.01 – 0.06, in ferrite to 0.06; SO₃ in alite 0.02 – 0.17, in belite 0.1 – 0.7% mass

Tablica 4 / Table 4

DOMIESZKI [% MAS.] W KRYSZTAŁACH ALITU W DWÓCH KLINKIERACH PRZEMYSŁOWYCH (3)

FOREIGN ELEMENTS [% MASS] IN ALITE CRYSTALS IN TWO INDUSTRIAL CLINKERS (3)

Tlenek/Oxide	AI_2O_3	Fe ₂ O ₃	MgO	Na₂O	K ₂ O	TiO ₂	SO₃
Alit jednosk. 3 / Alite monoclinic 3	0,8±0,1	0,6±0,2	0,98±0,07	0,20±0,02	0,20±0,02	0,12 ±0,05	0,02
Alit jednosk. 2 [pseudotrygonalny] Alite monoclinic 2 [pseudo-trigonal]	1,0±0,1	0,6±0,1	0,59±0,07	0,02±0,005	0,10±0,02	0,20 ±0,05	0,17±0,05

wpływ ZnO, który jak to wynika z tablicy 3 wyróżnia się największą zawartością w roztworach stałych. Ponadto zbadano wpływ roztworów stałych tlenków glinu i magnezu, które zawsze występują w alicie w klinkierze portlandzkim. Dla porównania objęto także doświadczeniami chrom, który ma bardzo mały wpływ na zmiany polimorficzne krzemianu trójwapniowego, bowiem stabilizuje tylko odmianę T₁.

Wyniki badań wytrzymałości próbek C₃S stabilizowanych tlenkami metali.

W związku z bardzo małą ilością badań obejmujących wpływ roztworów stałych w krzemianie trójwapniowym na jego wytrzymałość przeprowadzono takie doświadczenia. Obejmowały one przede wszystkim cynk, a także glin, magnez i chrom oraz "syntetyczny" alit, czyli równoczesny dodatek magnezu i glinu, w ilości po 2% każdego z tlenków.

Próbki krzemianu trójwapniowego uzyskiwano przez prażenie wodorotlenku wapnia cz.d.a. i pyłu krzemionkowego w laboratoryjnym piecu kanthalowym, w temperaturze 1500°C. Czas prażenia w maksymalnej temperaturze wynosił 2 godziny, a próbki chłodzono w powietrzu, po ich wyjęciu w temperaturze 1300°C. Z reguły próbki prażono dwukrotnie, ucierając w moździerzu agatowym po ochłodzeniu. Brak innych linii dyfrakcyjnych, poza krzemianem trójwapniowym, stanowił dowód prawidłowego przebiegu syntezy.

Zbadano ciężar właściwy uzyskanych próbek krzemian trójwapniowego z domieszką podanych tlenków metali, a wyniki podano w tablicy 5. Ciężar właściwy sproszkowanych próbek oznaczono piknometrycznie, stosując naftę jako ciecz piknometryczną. Pomiary wykonywano równolegle w dwóch piknometrach, a w związku from 3.02 to 3.04, which is just ascribed to solid solutions. The examples of foreign elements content in two alites with different structures are given after Regourd (3) in Table 4.

The ranges of various oxides contents in solid solutions in clinker are presented in Table 4. This data indicates that alite is not tricalcium silicate, but solid solutions of Al_2O_3 , Fe_2O_3 and MgO in $Ca_3[SiO_4]O$. When the Al_2O_3 content does not exceed 0.45%, Al^{3+} substitutes Si⁴⁺ in tetrahedra and simultaneously occupies free octahedral positions, assuring maintenance of electrical neutrality of the lattice.

As it follows from discussed works, examinations of the structure of tricalcium silicate containing foreign elements of various cations aroused very big interest. However, very small number of studies included the influence of these foreign elements on hydration process of tricalcium silicate and its strength with foreign elements. From this reason, the studies including primarily the influence of ZnO, which, as shown in Table 3, is characterized by the highest content in solid solutions, were conducted. Additionally, the influence of the solid solutions of aluminium and magnesium oxides,

Tablica 5 / Table 5

CIĘŻAR WŁAŚCIWY KRZEMIANU TRÓJWAPNIOWEGO Z RÓŻNYMI DOMIESZKAMI

SPECIFIC GRAVITY OF TRICALCIUM SILICATE WITH VARIOUS FOR-EIGN ELEMENTS

Próbka / Sample	g/cm³	Próbka / Sample	g/cm ³
C ₃ S + 2% ZnO	3,268	C ₃ S + 2% MgO + 2% Al ₂ O ₃	3,22
C₃S + 3% ZnO	3,283	C ₃ S + 1% Cr ₂ O ₃	3,23
C₃S + 5% ZnO	3,305	C ₃ S + 0,5% Al ₂ O ₃	3,21
C ₃ S + 2% MgO	3,21	C ₃ S + 1% Al ₂ O ₃	3,21

z bardzo mało różniącymi się wynikami, jako wynik przyjęto wartość średnią z tych dwóch pomiarów.

Oznaczono również powierzchnię właściwą próbek metodą Blaine'a, rozdrobnionych w małym pierścieniowym młynku metalowym; wyniki podano w tablicy 6.

Wyniki pomiarów wytrzymałości na ściskanie zaczynów z C_3S z dodatkami różnych metali , o stosunku w/s = 0,35 po 1,2, 7 i 28 dniach zebrano w tablicach 7a-c. Do pomiarów stosowano sześcienne kostki o boku 20 mm, przy czym stosowano zawsze 4 kostki, a wynik stanowi średnią. Po zaformowaniu kostki jedną dobę przebywały w formach przykrytych folią, w temperaturze 20°C i WW = 90%. Po rozformowaniu próbki przechowywano nad wodą w zamkniętym pojemniku. Podane w tablicach wyniki pomiarów wytrzymałości są średnimi z badań 4 kostek, wraz z podanymi odchyleniami standardowymi [SD].

Pomiary wytrzymałości wykazały, że najlepsze wyniki zapewnia dodatek cynku, przy czym wytrzymałość po 1, 2 i 7 dniach rośnie z jego zawartością, natomiast po 28 dniach zależność ta jest odwrotna. Największą wytrzymałość ma krzemian trójwapniowy z dodatkiem 2% ZnO. Na drugim miejscu lokuje się "syntetyczny" alit, który zapewnia największą wytrzymałość po 1 i 2 dniach, a taką samą jak 3% dodatek ZnO po 7 dniach. Dobrą wytrzymałość daje także dodatek 2% MgO, z wyjątkiem krótkich czasów dojrzewana.

Dodatek Al₂O₃ zwiększa wytrzymałość gdy wynosi on 0,5%, natomiast 1% ma niekorzystny wpływ, z wyjątkiem pierwszego dnia.

Dodatek chromu daje najgorsze wytrzymałości, znacznie mniejsze od wszystkich badanych roztworów stałych.

3. Badania ciepła hydratacji

Przeprowadzono badania ciepła hydratacji za pomocą nieadiabatycznego, nieizotemiczengo mikrokalorymetru, z których najważniejsze pokazano na rysunkach 3 – 6.

Uzyskane wyniki pokazują, że zawartość jonów cynku podstawiające wapń w krzemianie trójwapniowym powoduje znaczne zwiększenie ciepła hydratacji , jednak przy dosyć znacznym zwiększeniu okresu indukcji. Okres indukcji wzrasta ze zwiększeniem zawartości ZnO w roztworze stałym. Natomiast dodatek 5% ZnO, obok zwiększenia okresu indukcji, zmniejsza nieznacznie ciepło hydratacji [rysunek 4a i 4b]. Większe ciepło hydratacji dobrze zgadza się ze znacznym wzrostem wytrzymałości po jednym,

Tablica 6 / Table 6

POWIERZCHNIA WŁAŚCIWA PRÓBEK

SPECIFIC SURFACE AREA OF SAMPLES

which always occur in alite in Portland clinker, was also examined. The experiments with chromium, which has very low influence on polymorphic changes of tricalcium silicate, because it stabilises only $T_{\rm L}$ phase, were also included for comparison.

2. Compressive strength measurements of C₃S samples stabilised by metal oxides

Due to the very small amount of studies concerning the influence of solid solutions in tricalcium silicate on its strength, such experiments were carried out. These measurements included primarily zinc, and also aluminium, magnesium and chromium, as well as "synthetic" alite, thus simultaneous addition of magnesium and aluminium, in amount of 2% of each oxide.

Tricalcium silicate samples were obtained by burning of calcium hydroxide pure p.a. and silica fume in laboratory Kanthal furnace at temperature of 1500°C. Burning time at maximum temperature was 2 hours, and samples were cooling in air, after their removing at temperature of 1300°C. As a rule, samples were burning twice and pounding in agate mortar after cooling. Absence of other X-ray peaks, except tricalcium silicate, was a proof of the proper course of the synthesis.

Specific gravity of the obtained samples of tricalcium silicate with the addition of given metal oxides was measured, and the results are presented in Table 5. Specific gravity of powdered samples was determined by pycnometry, using kerosene as a pycnometric liquid. Measurements were conducted simultaneously in two pycnometers, and due to very similar results, the average value from these two measurements was given as a final result.

Specific surface area of samples ground in small metal ring mill was determined; the results are given in Table 6.

Compressive strength results of pastes containing C_3S with various metal additives, with w/b ratio = 0.35 after 1, 2, 7 and 28 days are presented in Tables 7a-c. 20 mm cubes were tested, always 4 cubes, and the result is the average value. After moulding, cubes were stored for one day in moulds covered with foil, at temperature of 20°C and RH = 90%. After demoulding, samples were stored above the water in a closed container. The strength results given in tables are average values of 4 cubes, along with given standard deviations [SD].

The strength measurements have shown that the best results ensures zinc addition, where compressive strength after 1, 2 and 7 days

Próbka / Sample	Powierzchnia / Surface cm ² /g	Próbka / Sample	Powierzchnia / Surface cm ² /g
C ₃ S + 2% ZnO	1950	C ₃ S + 2% MgO + 2% Al ₂ O ₃	2300
C ₃ S + 3% ZnO	2400	C ₃ S + 1% Cr ₂ O ₃	1750
C ₃ S + 5% ZnO	2450	C ₃ S + 0,5% Al ₂ O ₃	2300
C ₃ S + 2% MgO	3360	C ₃ S + 1% Al ₂ O ₃	2300

Tablica 7a / Table 7a

WYTRZYMAŁOŚĆ NA ŚCISKANIE KRZEMIANU TRÓJWAPNIOWEGO Z RÓŻNYM DODATKIEM ZnO

COMPRESSIVE STRENGTH OF TRICALCIUM SILICATE WITH VARIOUS ZnO ADDITION

	Wytrzymałości/Compressive strength, MPa							
C₃S + ZnO	2%		3%		5%			
	Średnia/Average	SD*	Średnia/Average	SD	Średnia/Average	SD		
1 dzień/day	11,28	0,97	15,75	1,25	16,40	0,72		
2 dni/days	16,40	1,18	24,99	1,78	27,39	2,19		
7 dni/days	37,43	3,12	43,97	1,74	55,69	2,32		
28 dni/days	101,36	10,78	88,72	6,72	63,06	3,85		

* SD - standard deviation

Tablica 7b / Table 7b

WYTRZYMAŁOŚĆ NA ŚCISKANIE KRZEMIANU TRÓJWAPNIOWEGO Z DODATKIEM Al2O3 I Cr2O3

COMPRESSIVE STRENGTH OF TRICALCIUM SILICATE WITH Al₂O₃ AND Cr₂O₃ ADDITIONS

0.0.	Wytrzymałości/Compressive strength, MPa						
$U_3S +$	0,5% Al ₂ O ₃		1% Al ₂ O ₃		1% Cr ₂ O ₃		
	Średnia/Average	SD*	Średnia/Average	SD	Średnia/Average	SD	
1 dzień / 1 day	2,50	0,19	3,37	0,10	0,95	0,02	
2 dni / 2 days	4,93	0,29	4,47	0,29	1,52	0,04	
7 dni / 7 days	20,00	1,08	11,60	0,60	3,79	0,09	
28 dni / 28 days	77,25	3,99	25,11	1,66	8,67	0,66	

* SD - standard deviation

dwóch i siedmiu dniach, z wyjątkiem $C_3S + 5\%$ ZnO, który ma nieznacznie mniejsze ciepło hydratacji, a jednak wytrzymałość aż do 7 dni jest największa.

Natomiast dodatek Al_2O_3 zmniejsza znacznie ciepło hydratacji, które jest mniejsze od krzemianu trójwapniowego bez domieszek. Natomiast "syntetyczny" alit, zawierający 2 % Al_2O_3 + 2% MgO ma nieco większe ciepło hydratacji i znacznie krótszy okres indukcji [rysunki 5a i 5b].

Proces hydratacji krzemianu trójwapniowego z dodatkiem chromu jest najwolniejszy, a okres indukcji najdłuższy. Jest tylko krótszy od próbki z dodatkiem 5% ZnO. Natomiast ciepło hydratacji jest najmniejsze [rysunek 6b]. Ten proces hydratacji zgadza się dobrze z oznaczonymi wytrzymałościami, które są również najgorsze [tablica 7b].

4. Badania faz powstających w trakcie hydratacji C₃S + 2% Zn

Wyniki obserwacji próbek po 2 dniach hydratacji w wodzie, w temperaturze 20°C ± 2°C dały bardzo ciekawe wyniki.

Za pomocą elektronowej mikroskopii skaningowej, z zastosowaniem mikroskopu wyposażonego w analizator rentgenowski przeprowadzono obserwacje mikrostruktury próbek krzemianu trójwapniowego z dodatkiem 2% Zn, po różnym okresie hydratacji. Wybrano C₃S z takim dodatkiem cynku gdyż ma on największą

Tablica 7c / Table 7c

WYTRZYMAŁOŚĆ NA ŚCISKANIE KRZEMIANU TRÓJWAPNIOWEGO Z DODATKIEM MgO I "SYNTETYCZNY" ALIT

COMPRESSIVE STRENGTH OF TRICALCIUM SILICATE WITH MgO ADDITION AND "SYNTHETIC" ALITE

	Wytrzymałości/Compressive strength, MPa					
C₃S + domieszki	2% MgO + 29	% Al ₂ O ₃	2% MgO			
C ₃ S + foreign elements	Średnia	SD	Średnia	90		
	Average	30	Average	50		
1 dzień/day	22,72	1,21	6,45	0,49		
2 dni/days	38,07	1,03	12,51	0,29		
7 dni/days	43,25	1,95	37,27	0,47		
28 dni/days	68,33	3,95	75,35	3,70		

increases with its content, while after 28 days this relationship is reversed. The highest compressive strength has tricalcium silicate with 2% of ZnO addition. The second place occupies "synthetic" alite, which provides the highest compressive strength after 1 and 2 days, and the same as samples with 3% of ZnO after 7 days. Good compressive strength is also given by the addition of 2% of MgO, except short periods of hardening.

 Al_2O_3 addition causes increase in compressive strength, when its content is 0.5%, while 1% has unfavourable influence, except first day.

Rys. 3a. Krzywe ciepła hydratacji C_3S bez i z dodatkiem 3% ZnO

Fig. 3a. Heat of hydration curves of C_3S without additive and with 3% of ZnO

wytrzymałość na ściskanie po 28 dniach [tablica 7a]. Można jednak przypuszczać, że mikrostruktura próbek nie będzie ulegała dostrzegalnym zmianom w przypadku próbek z 2% lub z 3% ZnO. Na rysunku 7 pokazano mikrostrukturę próbki po dwóch dniach hydratacji.

Większość ziaren pokrywa zewnętrzna faza C-S-H, są jednak także ziarna o gładkich powierzchniach.

Są to przeważnie ziarna krzemianu trójwapniowego, które nie przereagowały z wodą oraz portlandyt.

Przy większym powiększeniu widać fazę C-S-H o włóknistej morfologii oraz zrost kilku kryształów o pseudoheksagonalnej symetrii. Wykonana mikroanaliza [tablica 8b] wykazała, że jest to również Chromium addition gives worse compressive strength, significantly lower than all tested solid solutions.

3. Heat of hydration studies

Measurements of heat of hydration on nonadiabatic, non-isothermal calorimeter were conducted, and the main results are presented on Figs. 3 - 6.

Obtained results show that the content of zinc ions substituting calcium in tricalcium silicate cause significant increase in heat of hydration, but with a considerable extension of the induction period. Induction period is longer and longer with the increase in ZnO content in solid solution. However, 5% of ZnO addition, next to the extension of the induction period, slightly decreases heat of hydration [Figs. 4a and 4b]. Higher heat of hydration well corresponds to significant increase in compressive strength after 1, 2 and 7 days, except $C_3S + 5\%$ ZnO, which has slightly lower heat of hydration, nonetheless compressive strength is the highest up to 7 days.

However, Al_2O_3 addition significantly decreases the heat of hydration, which is lower than in the case of tricalcium silicate without foreign elements. On the other hand, "synthetic" alite, containing 2% $Al_2O_3 + 2\%$ MgO has slightly higher heat of hydration and significantly shorter induction period [Figs. 5a and 5b].

45 Hydration process of tricalcium silicate with chromium addition is the slowest, and induction period is the longest. It is shorter only than sample with 5% of ZnO addition. But heat of hydration is the lowest [Fig. 6b]. This hydration process well corresponds with obtained compressive strength, which is also the worst [Table 7b].

4. Studies of phases formed during hydration of C_3S + 2% Zn

Observations results of samples after 2 days of hydration in water, at temperature of $20^{\circ}C \pm 2^{\circ}C$ gave very interesting results.

Microstructure observations of tricalcium silicate with 2% of ZnO addition, after various hydration periods were conducted using scanning electron microscopy with X-ray microanalyzer. C_3S with such zinc addition was chosen because it has the highest compressive strength after 28 days [Table 7a]. However, it can be

Rys. 4a. Krzywe szybkości wydzielania ciepła C_3S z dodatkiem ZnO; dwie próbki z 3% ZnO i jedna z 5%

Fig. 4a. Curves of hydration rate evolution of C_3S with ZnO addition; two samples with 3% of ZnO and one sample with 5% of ZnO

Rys. 5a. Krzywe ciepła hydratacji C_3S z dodatkiem AI_2O_3 i "syntetyczny alit" Fig. 5a. Heat of hydration curves of C_3S with AI_2O_3 addition and "synthetic" alite

Rys. 4b. Krzywe ciepła hydratacji próbek z rysunku 4a

Fig. 4b. Heat of hydration curves of samples from Fig. 4a

assumed that the samples microstructure will not change significantly in the case of samples with 2% or 3% of ZnO. The microstructure of sample after two days of hydration is shown on Fig. 7.

Most particles are covered by outer C-S-H phase, but there are also grains with smooth surfaces.

They are mostly tricalcium silicate grains, which have not reacted with water and portlandite.

At higher magnification, C-S-H phase with fibrous morphology and also aggregation of few crystals with pseudohexagonal symmetry can be observed. Conducted microanalysis [Table 8b] indicated that it is also C-S-H phase, but with high zinc content. Of course, the shown analysis has a low accuracy, because no calibration was carried out, but it can be easily assumed that there are two C-S-H phases: without zinc and with high zinc content, slightly higher than content added to C₃S synthesis.

Tablica 8a / Table 8a

MIKROANALIZA WŁÓKNISTEJ FAZY C-S-H

X-RAY MICROANALYSIS OF FIBROUS C-S-H PHASE

0 K	32.59	52.50
MgK	0.53	0.57
AIK	0.76	0.72
SiK,	13.42	12.32
CaK	52.70	33.89
ZnK	0.00	0.00
Total	100	100

45 Conducted studies indicated that alite grains with smooth surface, without formation of outer C-S--H phase, do not contain zinc [analysis in Table 8a]. However, hydrating grains contain zinc in solid solution. Two types of C-S-H are formed,

Rys. 6a. Porównanie szybkości hydratacji C_3S z dodatkiem glinu i chromu

Fig. 6a. Comparison of hydration rate evolution of C₃S with aluminium and chromium^{morphology} [Fig. 9]. additions

Rys. 6b. Ciepło hydratacji C_3S z glinem i chromem

Fig. 6b. Heat of hydration curves of C_3S with aluminium and chromium

Rys. 7. Mikrostruktura próbki C₃S + 2% ZnO po dwóch dniach hydratacji Fig. 7. The microstructure of sample C₃S + 2% ZnO after two days of hydration

Tablica 8b / Table 8b

MIKROANALIZA FAZY C-S-H O NIETYPOWEJ MORFOLOGII

X-RAY MICROANALYSIS OF C-S-H PHASE WITH UNTYPI-CAL MORPHOLOGY

ΟK	32.74	52.80
MgK	0.86	0.91
AIK	1.09	1.05
SiK	14.57	13.38
CaK	47.52	30.59
ZnK	3.22	1.27
Total	100	100

not containing zinc and with zinc; the last has untypical morphology [Fig. 9].

5. Conclusions

Based on conducted studies, the following conclusions can be drawn.

- a) Solid solutions in tricalcium silicate have significant influence on compressive strength of pastes.
- b) Samples of tricalcium silicate containing zinc in solid solution have the highest compressive strength.

c) The lowest compressive strength has tricalcium silicate containing chromium.

d) Right correlation occurs between heat of hydration and compressive strength.

e) Zinc is not evenly distributed in the form of solid solution in tricalcium silicate crystals. There are tricalcium

Rys. 8. Włóknista faza C-S-H na ziarnach C_3S Fig. 8. Fibrous C-S-H phase on C_3S grains

192 сwв-3/2018

Rys. 9. Przykłady fazy C-S-H o nietypowej morfologii [punkty 1 i 2] oraz ziarno C_3S o gładkiej powierzchni, bez zewnętrznej fazy C-S-H [punkt 3]

Fig. 9. Examples of C-S-H phase with untypical morphology [points 1 and 2] and C_3S grain with smooth surface, without outer C-S-H phase [point 3]

faza C-S-H, jednak o dużej zawartości cynku. Pokazana analiza ma oczywiście małą dokładność bowiem nie wykonano kalibracji, jednak można bez wątpliwości przyjąć, że są dwie fazy C-S-H: nie zawierająca cynku oraz o dużej zawartości cynku, nieznacznie większej od zawartości dodanej do syntezy C₃S.

Badania wykazały, że ziarna alitu o gładkiej powierzchni, bez powstającej zewnętrznej fazy C-S-H, nie zawierają cynku [analiza w tablicy 8a]. Natomiast ulegające hydratacji zawierają cynk w roztworze stałym. Powstają także dwa rodzaje fazy C-S-H niezawierające cynku i z cynkiem; te ostatnie mają nietypową morfologię [rysunek 9].

5. Wnioski

Przeprowadzone doświadczenia pozwalają na wyciągnięcie następujących wniosków.

 a) Roztwory stałe w krzemianie trójwapniowym mają duży wpływ na wytrzymałość zaczynów.

 b) Największą wytrzymałość mają próbki krzemianu zawierające cynk w roztworze stałym.

c) Najmniejszą wytrzymałość ma krzemian trójwapniowy zawierający chrom.

d) Występuje dobra korelacja ciepła hydratacji z wytrzymałością.

e) Cynk nie jest równomiernie rozmieszczony w formie roztworu stałego w kryształach krzemianu trójwapniowego. Są cząstki krzemianu, które w ogóle nie zawierają cynku. Prawdopodobnie powoduje to podobne zróżnicowanie w fazie C-S-H. Rys. 10. Mikroanaliza rentgenowska w punkcie 1 na rysunku 9, pokazującym nietypową morfologię C-S-H, zawierającej sporo Zn [analiza w tablicy 8b]

Rys. 10. X-ray microanalysis in point 1 on Fig. 9, showing untypical morphology of C-S-H phase, containing considerable amount of Zn [analysis in Table 8b]

silicate particles, which do not contain zinc at all. It probably causes similar differentiation in C-S-H phase.

Literatura / References

1. J. W. Jeffry, Acta Cryst., 5, 26 (1952).

2. M. Regourd, A. Guinier, 6th ICCC Moskwa, t. I, s. 25, Moskwa 1974.

3. M. Regourd, "Structure and Performance of Cements" (red. P. Barnes),

s. 109, Applied Science Publ., London 1983.

4. I. Maki, 8th ICCC Rio de Janeiro, t. I, s. 34, Rio de Janeiro 1986.

5. I. Maki, S. Chromy, Cem. Concr. Res., 8, 93, 1978.

6. A. Guinier, M. Regourd, 5th ICCC Tokyo, t. I, s. 1, Tokyo 1968.

7. E. Woermann, T. Hahn, W. Eysel, Zement - Kalk - Gips, 16, 370 (1963).

8. M. Bigare, A. Guinier, C. Mazieres, M. Regourd, N. Yannaquis, W. Eysel,

T. Hahn, E. Woermann, J. Am. Ceram. Soc., **50**, 609 (1967).

9. W. Kurdowski, R. Wollast, Silicates Ind., 35, 153 (1970).

10. C. Yamaguchi, H. Uchikawa, Zement-Kalk-Gips, 14, 497 (1961).

11. E. Trivino, F. Vasquez, Cem. Concr. Res., 12, 455 (1982).

12. N. H. Christensen, K. A. Simonsen, J. Am. Ceram. Soc., 53, 361 (1970).

13. W. Kurdowski, M. Handke, G. Siemińska, 7th ICCC Paris, t. II, s. I-282, Paris 1980.

14. K. E. Fletcher, Trans. Brit. Ceram. Soc., 64, 377 (1965).

15. T. Hahn, W. Eysel, E. Woermann, 5th ICCC Tokyo, t. I, s. 61, Tokyo 1968.

16. A. L. Boikova, 5th ICCC Tokyo, t. I, s. 234, Tokyo 1968.

17. N. A. Toropov, A. L. Boikova, Dokł. Akad. Nauk SSSR, **154**, 1114 (1963); **156**, 1428 (1964).

18. R. Kondo, K. Yoshida, 5th ICCC Tokyo, t. I, s. 262, Tokyo 1968.

19. W. Kurdowski, "Wpływ dodatku baru na własności klinkieru portlandzkiego", Ceramika, nr 18, PAN, Kraków 1972.

20. F. M. Lea, "The Chemistry of Cement and Concrete", Chemical Publ. Comp. Inc., New York 1972.